GAMES101-Transformation Continue

Notes and Ideas

Posted by Rasin on June 28, 2020

Transformation

The inverse of the matrix is equal to its transposed matrix, which we call the orthogonal matrix.

3D Transformations

Use homogeneous coordinates again: 3D point = \((x, y, z, 1)^\top\), 3D vector = \((x,y,z,0)^\top\).

In general, \((x, y, z, w), (w\neq 0)\) is the 3D point \((x/w, y/w, z/w)\).

Using a 4x4 homogeneous coordinates for affine transformations: \(\begin{pmatrix} x'\\ y'\\ z'\\ 1 \end{pmatrix} =\begin{pmatrix} a & b & c& t_{x}\\ d & e & f& t_{y}\\ g & h & i& t_{z}\\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x\\ y\\ z\\ 1 \end{pmatrix}\)

Compose any 3D rotation from \(R_x, R_y, R_z\):

\[R_{xyz}(\alpha, \beta, \gamma) = R_x(\alpha) R_y(\beta) R_z(\gamma)\]

Rodrigues’ Rotation Formula

Rotation by angle \(\alpha\) around axis \(n\): \(\mathbb{R}(n, \alpha) = \cos (\alpha) \mathbb{I} + (1 - \cos (\alpha)) \mathbb{n}\mathbb{n}^\top + \sin (\alpha) \begin{bmatrix} 0 & -n_{z} & n_{y}\\ n_{z} & 0 & -n_{x}\\ -n_{y} & n_{x} & 0 \end{bmatrix}\)

Vieweing Transformation

  • What is view transformation
    • Model transformation (arrange objects)
    • View transformation (find a good angle)
    • Projection transformation (project to 2D)
  • Define the camera first
    • Position: \(\vec{e}\)
    • Look-at direction: \(\vec{g}\)
    • Up direction: \(\vec{t}\), for rotation direction use